Biology and Biochemistry of Trypanosoma cruzi


The World Health Organization estimates that Chagas decease (or American trypanosomiasis) affects about 15 million people and 15 to 30% of the cases present clinical manifestation of this disease. The protozoan parasite responsible of this illness is Trypanosoma cruzi, which has a complex life cycle that includes a cellular differentiation process and adaptation to different environments such as the digestive tract of the insect vector and the cellular cytoplasm and the bloodstream of different mammals. The main aim of this laboratory is to study the diverse metabolic processes that are relevant in Trypanosoma cruzi´s life cycle.

Research Lines

Bromodomains and acetylated proteins in Trypansoma cruzi

Head Researcher:

Esteban Serra, Ph.D. |


Protein acetylation is one of the most common posttranslational modification in eukaryotic cells and bacteria. Although the molecular bases of its action mode are not completely known it has been established that acetylation modulates important cellular processes such as the modification of chromatin structure, transcription, cell cycle progression, regulation of energetic metabolism and microtubules remodeling. In Trypanosomatids only histone acetylation, its potential effect on transcription and DNA repair has been partially studied In Trypanosomatids. In many cases, acetylation generates docking site for protein-protein interaction through an acetylated lysine recognition motif called Bromodomain. This domain is the exclusive structural motif capable of recognize and bind acetylated lysines that has been described only in nuclear proteins. In the last few years, numerous drugs capable of inhibiting acetylases and deacetylase have been developed, some of which were tested as antiparasitic drugs. Recently it has been demonstrated that the bromodomain-acetylated protein interaction can be inhibit with possible therapeutic purposes. Using bioinformatic methods, five divergent coding sequences for bromodomain containing proteins have been found in the T. cruzi genome. These proteins contain the bromodomain region, and other regions with non-identified structures that could interact with other proteins to form multisubunit complexes. The general aim of this project is to study the existence of bromodomain containing proteins inside and outside the nucleus that could participate in the modulation of different cellular events mediated by acetylation and to study these proteins as potential chemotherapeutic targets.

Heme transport and metabolism in Trypanosoma cruzi

Head Researcher:

Julia A. Cricco, Ph.D. |


Heme is an essential molecule for all aerobic organisms and most of them synthesize it by a conserved pathway. Trypanosoma cruzi, like other trypanosomatids and several parasites, shows nutritional requirements for several cofactors, where heme is included. They present a partial or complete absence of a heme biosynthetic pathway. T. cruzi lacks of the all the enzymes involved in it biosynthesis, to compensate this deficiency it has to import heme from their hosts. This heme deficiency is observed in other trypanosomatids responsible for human diseases like T. brucei and Leishmania spp.. In our lab, we study the mechanisms for heme uptake and trafficking in T. cruzi and the its later insertion into the intracellular hemeproteins. Most of these proteins have relevant functions in the parasite metabolism and are located in different organelles like mitochondria and endoplasmic reticulum. Our aims are the elucidation of the mechanisms involved in heme transport and distribution and the identification of the transporter, carriers and/or chaperones associated to these processes. Considering that T. cruzi does not synthesize heme, the blockage or inhibition of the heme transport and/or utilization could severely affect the parasite life cycle. The achievement of the proposed goals will contribute to validate the heme transport and trafficking pathway as a possible target for drug design against T. cruzi and Chagas disease.

Study of Trypanosoma cruzi High Mobility Group B protein: chromatin structure and epigenetics

Head Researcher:

Pamela Cribb, Ph.D. |


High mobility group B (HMGB) proteins are important for different processes, inside the nucleus they affect chromatin structure and also they have an extracellular role acting as pro-inflamatory cytoquine. In our lab, we are working in the characterization of protein complexes related to chromatin-remodelling and to the transcription pre-initiation complex assembly, in other to better understand the biological processes involved in gene expression control in Trypanosoma cruzi. High mobility group B (HMGB) proteins are highly abundant non-histone chromatin proteins that play important roles in the execution and control of many nuclear functions. Based on homology searches, we identified the coding sequence for the TcHMGB protein, an HMGB family member from Trypanosoma cruzi. TcHMGB has two HMG box domains, similar to mammalian HMGBs, but lacks the typical C-terminal acidic tail. Instead, it contains a 110 amino acid long N-terminal domain. We have demonstrated that TcHMGB is a nuclear protein, expressed in all the parasite life-stages and that is also able to bend linear DNA and recognize distorted DNA structures. Protein levels, however, seem to vary throughout the life cycle, which may be related to previously described changes in heterochromatin distribution and transcription rates. The general aim of this project is to study if TcHMGB affects the structure of chromatin in vivo, if there are changes in the quantity of this protein throughout the life cycle of Trypanosome cruzi, if the acetylation levels affect its localization like in other organisms and also if TcHMGB has an immunomodulative activity and could be involved in the host response to T. cruzi infection.

Selected Publications

  • Tavernelli LE, Motta MCM, Gonçalves CS, da Silva MS, Elias MC, Alonso VL, Serra EC, Cribb P* (2019). Overexpression of Trypanosoma cruzi High Mobility Group B protein (TcHMGB) alters the nuclear structure, impairs cytokinesis and reduces the parasite infectivity. Sci Rep. Nature Publishing Group; 2019;9: 192. doi:10.1038/s41598-018-36718-0
  • Alonso VL, Tavernelli LE, Pezza A, Cribb P, Ritagliati C, Serra EC (2018). Aim for the readers! Bromodomains as new targets against Chagas disease. Review article by invitation. Current Medicinal Chemistry. 2018 Oct 31. doi: 10.2174/0929867325666181031132007.
  • Garcia P*, Alonso VL*, Serra EC, Escalante AM, Furlan R (2018). Discovery of a Biologically Active Bromodomain Inhibitor by Target-Directed Dynamic Combinatorial Chemistry.  ACS Med. Chem. Lett.20189 (10), pp 1002–1006. doi: 10.1021/acsmedchemlett.8b00247. *Equal contribution.
  • Ramallo, I.A*., Alonso, V.L.*, Rua, F., Serra, E., and Furlan, R.L.E. (2018). A Bioactive Trypanosoma cruzi Bromodomain Inhibitor from Chemically Engineered Extracts. ACS Combinatorial Science. doi: 10.1021/acscombsci.7b00172- *Equal contribution.
  • Cribb, P., Perdomo, V., Alonso, V. L., Manarin, R., Barrios-Payan, J., Marquina-Castillo, B., … Hernandez-Pando, R. (2017). Trypanosoma cruzi High Mobility Group B (TcHMGB) can act as an inflammatory mediator on mammalian cells. PLoS Neglected Tropical Diseases, 11(2).
  • Merli, M. L., Pagura, L., Hernandez, J., Barison, M. J., Pral, E. M. F., Silber, A. M., & Cricco, J. A. (2016). The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake. PLoS Neglected Tropical Diseases, 10(1).
  • Alonso, V. L., Ritagliati, C., Cribb, P., Cricco, J. A., Serra, E. C. (2016). Overexpression of bromodomain factor 3 in Trypanosoma cruzi (TcBDF3) affects differentiation of the parasite and protects it against bromodomain inhibitors. FEBS Journal 9:1–8.
  • Ritagliati, C., Alonso, V. L., Manarin, R., Cribb, P., & Serra, E. C. (2015). Overexpression of Cytoplasmic TcSIR2RP1 and Mitochondrial TcSIR2RP3 Impacts on Trypanosoma cruzi Growth and Cell Invasion. PLoS Neglected Tropical Diseases, 9(4).
  • Ritagliati, C., Villanova, G. V., Alonso, V. L., Zuma, A. A., Cribb, P., Motta, M. C. M., Serra, E. C. (2015). Glycosomal bromodomain factor 1 from Trypanosoma cruzi enhances trypomastigote cell infection and intracellular amastigote growth. The Biochemical journal 473:73–85.
  • Alonso VL, Villanova GV, Ritagliati C, Machado Motta MC, Cribb P, Serra EC. (2014) Trypanosoma cruzi Bromodomain Factor 3 (TcBDF3) binds acetylated α tubulin and concentrates in the flagellum during metacyclogenesis. Eukaryot Cell. 13, 822-831
  • Trípodi, K.J.E., Menendez Bravo, S.M. and Cricco, J.A., (2011). “Role of heme and heme-proteins in trypanosomatid essential metabolic pathways”, Enzyme Research, special issue “New Enzymes as Potential Therapeutic Targets for Trypanosomiases and Leishmaniasis” 2011, article ID 873230, 12 pages. doi:10.4061/2011/873230.
  • Cupello Peixoto, M., Fernandes de Souza, C., Buchensky, C., Baptista Rocha Corrêa Soares, J., Travassos Laranja, G.A., Garcia Pinto Coelho, M., Cricco, J.A., and Paes, M.C., (2011). “The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters.” Acta Tropica 120 (3), 211-218.
  • Cribb P., Perozzi M., Villanova G.V., Trochine A., Serra E. (2011). “Trypanosoma cruzi High Mobility Group B (TcHMGB) is a chromatin architectural factor”. International Journal for Parasitology 41(11):1149-56.
  • Buchensky, C., Almirón, P., Suarez Mansilla, B.A., Silber, A.M. and Cricco, J.A., (2010). “The Trypanosoma cruzi proteins TcCox10 and TcCox15 catalyze the formation of heme A in the yeast Saccharomyces cerevisiae”, FEMS Microbiology Lett. 312(2), 133-41.
  • Cribb P., Esteban L., Trochine A.; Girardini J., Serra E. (2010) “Trypanosoma cruzi TBP shows preference for C/G-rich DNA sequences in vitro”. Experimental Parasitology 124, 346-349.
  • Villanova V., Nardelli S., Cribb P., Silber A.M., Motta C., Schenkman S., Serra E. (2009) “Trypanosoma cruzi Bromodomain Factor 2 (BDF2) binds to acetylated histones and is accumulated after UV irradiation”. International Journal for Parasitology 39(6):665-73.
  • Cribb P., Serra E. (2009) “One- and Two-Hybrid analysis of the interactions between components of the Trypanosoma cruzi Spliced Leader RNA promoter-binding complex”. International Journal for Parasitology 39, 525-32.


  • Dra. Marcia C. Paes. Departamento de Bioquímica Instituto de Biología Roberto Alcantara Gomes (ibrag) Universidad do Estado do Rio de Janeiro, Brasil.
  • Dra. Maria Cristina Motta. Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
  • Dr. Ariel M. Silber. Departamento de Parasitología, Instituto de Cs. Biomédicas, Universidade de São Paulo, Brasil.
  • Dr. Sergio Schenckman. Departamento de Microbiología, Inmunología e Parasitología, Universidad Federal de São Paulo, R. Botucatu, São Paulo, SP, Brasil.
  • Dr. Claudio A. Pereira. Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas "Alfredo Lanari", Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
  • Dra. María Alejandra Mussi. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR.
  • Dr. Igor Almeida. The Border Biomedical Research Center. Dept. of Biological Sciences. University of Texas at El Paso, USA.
  • Dr. Rogelio Hernandez Pando. Sección de Patología Experimental. Departamento de Patología. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Ciudad de México, México.
  • Profesor Dennis R. Winge Ph.D. University of Utah Health Sciences Center. University of Utah. Salt Lake City, Utah, USA.


“Estudio de la proteína High Mobility Group B de Trypanosoma cruzi en su interacción con el ADN y su participación en procesos nucleares”. PICT 2019-4212. Investigadora Responsable del Proyecto: Dra. Pamela Cribb. Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT). Bianual: 2021-2024

"Rol de las proteínas HMGB en la interacción parásito-hospedador durante la infección por Trypanosoma cruzi". PICT 2016-0439.Investigadora Responsable del Proyecto: Dra. Pamela Cribb. Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT). Bianual:2017-2019

"Estudio y caracterización de proteínas mitocondriales de Trypanosoma cruzi". PIP 2013-2015 GI. Investigadora Responsable del Proyecto:Dra. Julia A. Cricco.Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET. Trianual: 2014-2016.

Transporte de hemo como posible blanco para la inhibición de la proliferación de Trypanosoma cruzi”. PICTO 2011-0011. Investigador Responsable:Dra. Julia A. Cricco. Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) – GLAXOSMITHKLINE. Trianual: 2012-2014.

Bromodominios y proteínas acetiladas en Trypanosoma cruzi.”PICTO 2011-0046. Investigador responsable: Dr. Esteban Serra. Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) – GLAXOSMITHKLINE. Trianual: 2012-2014.

Utilización de hemo en Trypanosoma cruzi. Elucidación de la biosíntesis de hemo A”. PICT 2010-1992. Investigador responsable:Dra. Julia A. Cricco. Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT). Trianual: 2011-2013.

“Estudio de la proteína “High Mobility Group B” de Trypanosoma cruzi (TcHMGB)”.FBB38/12. Investigador responsable:Dra. Pamela Cribb.Subsidio de la Fundación Bunge y Born 2010/2012, para Investigación de la Enfermedad de Chagas. Bianual: 2010-2012.

“Estudio de la proteína “High Mobility Group B” de Trypanosoma cruzi (TcHMGB)”.PIP 2011 00372.Investigador responsable:Dra. Pamela Cribb.Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET. Trianual: 2012-2015.

Estudio de la proteína High Mobility Group B (HMGB) desde las dos vertientes de la interrelación patógeno hospedero”. Subsidio para Actividades de Cooperación Internacional. Proyecto Conjunto Convocatoria 2012 CONICET-CONACYT. Investigadores Responsables: Dra. Pamela Cribb (CONICET), Dr. Rogelio Hernandez Pando (CONACYT). Bianual: 2013-2015.

Aplicación de tecnología post-genómica y desarrollo de herramientas moleculares para la identificación de posibles blancos de nuevas drogas tripanocidas”. PIP 2010-2012 GI – 11220090100685,Investigador responsable:Dr. Claudio A. Pereira.Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET. Trianual: 2010-2012.