Stress Biology in Plants


We investigate the mechanisms that confer plant tolerance to adverse environmental situations including biotic and abiotic stress. These environmental challenges have as a common feature the establishment a secondary oxidative stress caused by a perturbation of redox homeostasis, especially in chloroplasts. To reestablish the redox conditions through genetic manipulation of components of the photosynthetic electron transport chain, we designed and prepared transgenic plants displaying increased tolerance to multiple sources of environmental stress including drought, salt, high irradiation, herbicides and pathogens.

Research Lines

Design and chracterization of transgenic plants with widespread tolerance to environmental stress (of biotic, abiotic and xenobiotic origins) by manipulation of redox pathways in chloroplasts

When exposed to adverse environmental or nutritional conditions, plants suffer an imbalance of redox homeostasis in different sub-cellular compartments, especially in chloroplasts, which have a very active electron flow due to photosynthesis. The core hypotheses of this project are: i) most of the imbalance occurs at the reducing end of photosystem I due to inactivation of ferredoxin and/or ferredoxin NADP+ reductase, and can be corrected by over-expression of those components, ii) the substitutive strategies present in photosynthetic microorganisms (e. g., replacement of ferredoxin by flavodoxin under conditions of environmental stress or iron starvation) are still operative in plants, even though they have disappeared from them in the course of evolution. Accordingly, the electronic imbalance can also be corrected by expression of alternative electron carriers from bacterial origin. The general aims are: i) to understand the mechanisms of energy dissipation at the reducing side of photosystem I during stress episodes, and ii) to design transgenic model plants (tobacco, Arabidopsis) and crops (tomato, potato) with multiple tolerance toward stress situations (drought, chilling, pathogens, chemical oxidants) and toward iron deficiency.

As a final outcome of the project, we expect to construct a model that integrates the various electrons fluxes occurring in the chloroplast, stemming from the photosynthetic electron transport chain and connecting with the productions of reactive oxygen species, as well as its control and activity as messengers for the adaptive responses to environmental and/or nutritional challenges. Based on this knowledge, and the observations gathered during the course of the project, we also expect to elaborate protocols for the rational design of transgenic crops with enhanced tolerance against environmental stress.

Selected Publications

  • Lodeyro, A.F., Giró, M. Poli, H.O., Betucci, G., Cortadi, A., Ferri, A.M., Carrillo, N. “Suppression of reactive oxygen species accumulation in chloroplasts prevents leaf damage but not growth arrest in salt-stressed tobacco plants” (2016) PLOS One (enprensa).
  • Pierella Karlusich, J.J., Ceccoli, R.D., Graña, M., Romero, H., Carrillo, N.“Environmental selection pressures related to iron utilization areinvolved in the loss of the flavodoxin gene from the plant genome”. (2015)Genome Biology and Evolution 7: 750-767.
  • Foresi, N.*; Mayta, M.*; Lodeyro, A.; Scuffi, D.; Correa-Aragunde, N.; García-Mata, C.; Casalongué, C.; Carillo, N.; Lamattina, L. “Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcustauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis”. (2015) Plant J.82: 806-821, doi: 10.1111/tpj.12852 (*igualcontribución).
  • Delprato, M.L., Krapp, A.R., Carrillo N. “Green Light to Plant Responses to Pathogens: the Role of Chloroplast Light-Dependent Signaling in Biotic Stress”. (2015) Photochemistry and Photobiology, 91: 1004-1011, DOI: 10.1111/php.12466.
  • Cabello*, J., Lodeyro*, A.F.,Zurbriggen, M. “Novel perspectives for the engineering of abiotic stress tolerance in plants”. (2014) Curr. Op. Biotech. 26: 62–70. (*igualcontribución).
  • Pierella Karlusich, J.J., Lodeyro, A. F., Carrillo, N. “The long goodbye: the rise and fall of flavodoxin during plant evolution”. (2014) J. Exp. Bot.68: 5161-5178.
  • Moyano, A.J., Tobares, R.A., Rizzi, Y.S., Krapp A.R., Mondotte, J.A, Bocco, J.L. Saleh, M.C., Carrillo N., Smania, A.M. “A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance”. (2013) PLOS Genetics, 10(2): e1004163. doi:10.1371/journal.pgen.1004163.
  • Ceccoli, R.D., Blanco, N.E. Segretin, M.E., Melzer, M.,Hanke, M.T.,Scheibe, R.,Hajirezaei, M.R., Bravo-Almonacid, F.F., Carrillo,N. “Flavodoxin displays dose-dependent effects on photosynthesis and stress tolerance when expressed in transgenic tobacco plants”.(2012) Planta 236: 1447-1458.
  • Chorostecki, U., Crosa, V., Lodeyro, A.F., Bologna, N., Martin, A., Carrillo, N.,Schommer, C.,Palatnik,J.P. “Identification of new microRNA-regulated genes by conserved targeting in plant species”. (2012) Nucleic Acids Res. 40: 8893-8904.
  • Lodeyro, A.F.,Ceccoli, R.D.,PierellaKarlusich, J.J, Carrillo, N.“The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnologicalpotential”. (2012) FEBS Lett. 31: 2917-2924.
  • Ceccoli, R.D., Blanco, N.E., Medina, M., Carrillo, N. “Stress response of transgenic tobacco plants expressing a cyanobacterialferredoxin in chloroplasts”. (2011) Plant Mol. Biol. 76: 535-544.
  • Krapp, A.R., Humbert, M., Carrillo, N. “ThesoxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content”. (2011) Microbiology 157: 957-965.
  • Blanco, N.E., Ceccoli, R.D., Segretin, M.E., Poli, H., Voss, I., Melzer, M., Bravo-Almonacid, F.F, Scheibe, R., Hajirezaei, M.R., Carrillo, N. Cyanobacterialflavodoxin complements ferredoxin deficiency in knocked-down transgenic tobacco plants.(2011) Plant J. 65: 922-935.


  • Dra. Andrea Smania, CIQUIBIC, Universidad Nacional de Córdoba, Argentina.
  • Dr. Lorenzo Lamattina, IIB, Universidad Nacional de Mar del Plata, Argentina
  • Dr. Juan José Guiamet, INFIVE, Universidad Nacional de La Plata, Argentina.
  • Dr. Fernando Bravo-Almonacid, INGEBI, Universidad de Buenos Aires, Argentina.
  • Dr. Nico von Wirén, Dr. MohammadHajirezaei, Dr. Michael Melzer, IPK Gatersleben, Alemania.
  • Dra. Renate Scheibe, University of Osnabrück, Alemania.
  • Dr. Héctor Romero, Departamento de Ecología y Evolución, Facultad de Ciencias/CURE, Universidad de la República, Montevideo, Uruguay.
  • Dr. Martín Graña, Unidad de Bioinformática, Institut Pasteur Montevideo, Uruguay.


  • Carrillo, N., Giró, M., Lodeyro, A.F., Zurbriggen, M.D. (2010) Stress tolerant plants, U S. patent WO2011/018662 A1.
  • Ceccarelli, E.A., Sosa, G., Carrillo, N., Useglio, M., Lagorio, S. (2008) Un método para el control de malezas en cultivos vegetales. Argentina Nº de registro: 80101113.
  • Tognetti, V., Palatnik, J., Fillat, M., Valle, E., Carrillo, N. (2004) Stress tolerant plants. EU patent Nº 02801941.2-2405-GB0204612.
  • Palatnik, J., Fillat, M., Carrillo, N., Valle, E., Tognetti, V. (2004) Stress tolerant plants. US patent Nº 6,781,034 B2.


  • PICT 2015-3828. ANPCyT. “Desarrollo de plantas transgénicas con tolerancia aumentada a estrés ambiental por expresión de proteínas de flavina-dihierrocianobacterianas en cloroplastos” Director: Dr. Néstor Carrillo
  • PICT 2014-2496. ANPCyT. “Rol de las especies reactivas del oxígeno generadas en cloroplasto durante el desarrollo y la senescencia foliar” Directora: Dra.AnabellaLodeyro
  • PICT 2012-2851. ANPCyT: “Mecanismo molecular de la tolerancia a estrés biótico y abiótico conferida por la expresión de flavodoxina de cianobacterias en plantas superiores". Director: Dr. Néstor Carrillo
  • PIP 2012-11220110101075. CONICET: "Tolerancia a estrés en plantas transgénicas que expresan el sistema soluble ferredoxina NADP+reductasa/flavodoxina". Directora: Dra. AnabellaLodeyro

Director de Grupo

Array ( [8695] => Array ( [width] => 290 [height] => 145 [file] => 2013/12/carrillo.jpg [sizes] => Array ( [thumbnail] => Array ( [file] => carrillo-290x145.jpg [width] => 290 [height] => 145 [mime-type] => image/jpeg ) [medium] => Array ( [file] => carrillo-300x265.jpg [width] => 300 [height] => 265 [mime-type] => image/jpeg ) [profile-thumb] => Array ( [file] => carrillo-200x200.jpg [width] => 200 [height] => 200 [mime-type] => image/jpeg ) ) [image_meta] => Array ( [aperture] => 0 [credit] => [camera] => [caption] => [created_timestamp] => 1368056516 [copyright] => [focal_length] => 0 [iso] => 0 [shutter_speed] => 0 [title] => [orientation] => 1 [keywords] => Array ( ) ) [ID] => 8695 [name] => carrillo.jpg [path] => /home/ibrconi/public_html/wp-content/uploads/2013/12/carrillo.jpg [url] => [full_url] => [title] => carrillo [caption] => [description] => [alt] => [srcset] => ) )

Carrillo, Néstor
Core CCT
Phone: +54 341 4237070
Office Extension: 636
Laboratory Extension: 613

Fotografías de tejidos vegetales que expresan un biosensor fluorescente de NADP(H) obtenidas con el microscopio confocal. Izquierda: cloroplastos del mesófilo. Medio: células epiteliales. Derecha: estoma del epitelio con biosensor fluorescente verde citosólico y clroroplastos con fluorescencia roja.